- FENTON, D. E., COOK, D. H. & NOWELL, I. W. (1977). Chem. Commun. pp. 274–275.
- FENTON, D. E., COOK, D. H., NOWELL, I. W. & WALKER, P. E. (1978). Chem. Commun. pp. 279–280.
- International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B. Birmingham: Kynoch Press.
- LINDOY, L. F. & BUSCH, D. H. (1971). Prep. Inorg. React. 6, 1–61.

Acta Cryst. (1979). B35, 1894–1895

METZ, B. & WEISS, R. (1973). Acta Cryst. B29, 1088-1093.

METZ, B. & WEISS, R. (1974). Inorg. Chem. 13, 2094-2098.

- NELSON, S. M., MCFALL, S. G., DREW, M. G. B., HAMID BIN OTHMAN, A. & MASON, N. B. (1977). *Chem. Commun.* pp. 167–168.
- SHANNON, R. D. & PREWITT, C. T. (1969). Acta Cryst. B25, 925–946.

Nitrato(1,4,7,10-tetraazacyclododecane)copper(II) Nitrate

BY ROBERT CLAY, PETER MURRAY-RUST AND JUDITH MURRAY-RUST

Department of Chemistry, University of Stirling, Stirling FK9 4LA, Scotland

(Received 5 April 1979; accepted 23 April 1979)

Abstract. $[Cu(C_8H_{20}N_4)(NO_3)]^+ .NO_3^-$, $C_8H_{20}CuN_5^-O_3^+ .NO_3^-$, $M_r = 359\cdot8$, monoclinic, $P2_1/n$, $a = 12\cdot00$ (1), $b = 13\cdot76$ (1), $c = 8\cdot86$ (2) Å, $\beta = 90\cdot10$ (3)° from diffractometer measurements (Mo $K\overline{\alpha}$ radiation), $V = 1463\cdot8$ Å³, Z = 4, $D_m = 1\cdot60$, $D_c = 1\cdot63$ Mg m⁻³, F(000) = 748, $\mu = 1\cdot409$ mm⁻¹. The complex contains five-coordinate Cu^{II} in a square-pyramidal environment, the Cu being 0.5 Å above the plane containing the four N atoms of the macrocycle.

Introduction. Systematic absences from precession photographs h0l: h + l odd, 0k0: k odd indicated space group $P2_1/n$. Data were collected for hk0-8 with θ_{max} = 25° on a Stoe STADI-2 two-circle diffractometer (graphite-monochromated Mo $K\overline{\alpha}$ radiation). This gave 2803 data of which 1862 unique reflexions with I > $3\sigma(I)$ were used in subsequent calculations. Lorentz and polarization corrections (but none for extinction or absorption) were applied, and the data scaled by a Wilson plot. The structure was solved by direct phasing methods with SHELX 76 (Sheldrick, 1976), which was used for all calculations. Complex neutral-atom scattering factors were taken from International Tables for Xray Crystallography (1974). Weighted full-matrix leastsquares refinement (including isotropic H atoms) converged at R = 0.052 for 1862 observed reflexions $(R = \sum ||F_o| - |F_c|| / \sum |F_o|; R_w = 0.059 \ \{R_w = \sum (|F_o| - |F_c|| w^{1/2}) / \sum (|F_o| w^{1/2}), w = 3.43 / [\sigma^2(F_o) + 0.000656 F_o^2] \}.$

In the final cycle all shifts in parameters were less than their e.s.d.'s. Positional parameters are given in Table 1, bond distances and angles in Table 2.*

Table	1.	Fractional	atomic	coordinates	(×10 ⁴)	with				
e.s.d.'s in parentheses										

	x	y	Ζ
Cu(1)	3468 (0)	5711 (0)	2922 (1)
C(2)	1678 (6)	6187 (5)	4787 (9)
C(3)	2642 (7)	6374 (5)	5797 (8)
C(5)	3941 (5)	7447 (4)	4385 (8)
C(6)	4875 (5)	7375 (5)	3237 (9)
C(8)	3906 (7)	7127 (5)	794 (9)
C(9)	3398 (7)	6340 (5)	-162(7)
C(11)	1611 (6)	5872 (7)	1161 (10)
C(12)	1196 (5)	5251 (6)	2482 (12)
O(14)	4529 (3)	4426 (3)	3080 (5)
O(15)	3094 (4)	3579 (3)	2458 (7)
O(16)	4685 (4)	2900 (3)	2620 (6)
O(18)	3112 (4)	3940 (4)	8666 (6)
O(19)	2580 (5)	3758 (5)	6382 (7)
O(20)	1569 (4)	4524 (4)	7940 (8)
N(1)	1973 (4)	5371 (4)	3827 (7)
N(4)	3712 (4)	6460 (3)	4859 (6)
N(7)	4539 (4)	6671 (4)	1994 (7)
N(10)	2749 (5)	5619 (4)	889 (6)
N(13)	4102 (3)	3637 (3)	2683 (5)
N(17)	2423 (4)	4069 (4)	7652 (7)
H(1A)	1957	4727	4516
H(2A)	1518	6817	4093
H(2 <i>B</i>)	944	6024	5447
H(3A)	2505	7041	6409
H(3 <i>B</i>)	2721	5778	6581
H(4A)	4256	6119	5675
H(5A)	3208	7764	3878
H(5 <i>B</i>)	4202	7885	5333
H(6A)	5622	7115	3787
H(6 <i>B</i>)	5029	8083	2758
H(7 <i>A</i>)	5279	6277	1662
H(8A)	3260	7588	1254
H(8 <i>B</i>)	4460	7560	109
H(9 <i>A</i>)	2832	6660	-969
H(9 <i>B</i>)	4044	5949	-751
H(10A)	2770	5014	100
H(11A)	1550	6637	1449
H(11B)	1128	5736	154
H(12A)	363	5469	2787
H(12 <i>B</i>)	1192	4498	2133

© 1979 International Union of Crystallography

COOK, D. H. (1977). PhD Thesis, Sheffield Univ., England.

^{*} Lists of structure factors and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34416 (14 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 2. Bond distances (Å) and bond angles (°) with e.s.d.'s in parentheses

Cu(1)-O(14) 2.13	83 (4)	C(8)–N(7)	1.449 (10)
Cu(1) - N(1) 2.03	22 (5)	C(9) - N(10)	1.570 (9)
Cu(1) - N(4) = 2.03	23 (5)	C(11) - C(12)	1.533 (13)
Cu(1) - N(7) = 2.0	19 (5)	C(11) - N(10)	1.430 (10)
Cu(1) - N(10) = 2.0	01 (6)	C(12) - N(1)	1.522 (11)
C(2) - C(3) 1.4	84 (11)	O(14) - N(13)	1.251 (5)
C(2)-N(1) 1.4	53 (9)	O(15)-N(13)	1.228 (6)
C(3)–N(4) 1.5	36 (9)	O(16)-N(13)	1.234 (6)
C(5)-C(6) 1.5	18 (10)	O(18)-N(17)	1 234 (8)
C(5)–N(4) 1.4	48 (8)	O(19)–N(17)	1.219 (9)
C(6)-N(7) 1.5	21 (9)	O(20)–N(17)	1.228 (7)
C(8)-C(9) 1.5	03 (11)		
N(1)-Cu(1)-O(14)	107.8 (2)	N(13)-O(14)-Cu(1)	116.5 (3)
N(4) - Cu(1) - O(14)	105.9 (2)	C(2)-N(1)-Cu(1)	105.7 (4)
N(4)-Cu(1)-N(1)	84.7 (2)	C(12)-N(1)-Cu(1)	104.9 (4)
N(7)-Cu(1)-O(14)	100.6 (2)	C(12)-N(1)-C(2)	113.1 (5)
N(7)-Cu(1)-N(1)	151.6 (2)	C(3) - N(4) - Cu(1)	107.5 (4)
N(7)-Cu(1)-N(4)	85.5 (2)	C(5)-N(4)-Cu(1)	105.0 (4)
N(10)-Cu(1)-O(14)	104.9 (2)	C(5)-N(4)-C(3)	112.9 (5)
N(10)-Cu(1)-N(1)	87.8 (2)	C(6) - N(7) - Cu(1)	106.8 (4)
N(10)-Cu(1)-N(4)	149.1 (2)	C(8) - N(7) - Cu(1)	104.4 (4)
N(10)-Cu(1)-N(7)	87.1 (2)	C(8) - N(7) - C(6)	113-2 (5)
N(1)-C(2)-C(3)	107.2 (6)	C(9)–N(10)–Cu(1)	106-3 (4)
N(4)-C(3)-C(2)	109.8 (5)	C(11) - N(10) - Cu(1)	104.1 (5)
N(4)–C(5)–C(6)	106.0 (5)	C(11)-N(10)-C(9)	114.9 (6)
N(7)-C(6)-C(5)	109.3 (5)	O(15)N(13)O(14)	120.4 (4)
N(7)-C(8)-C(9)	108.3 (6)	O(16)-N(13)-O(14)	119.6 (4)
N(10)-C(9)-C(8)	108-8 (5)	O(16)-N(13)-O(15)	119.9 (4)
N(10)-C(11)-C(12)	107.8 (6)	O(19)–N(17)–O(18)	121.1 (6)
N(1)-C(12)-C(11)	109.8 (6)	O(20)-N(17)-O(18)	118.7 (6)
		O(20) = N(17) = O(19)	120.2 (6)

Discussion. The ability of 1,4,7,10-tetraazacyclododecane (L) (I) to form metal complexes is limited by its aperture, which is smaller than most transition-metal ions (Martin, DeHayes, Zompa & Busch, 1974). No trans-octahedral MLX₂ complexes are known, although there is evidence for square-planar Ni^{II} complexes in solutions containing large amounts of inert electrolyte at high temperature (Fabbrizzi, 1977). Folded cis-octahedral complexes are known for CoII (Loehlin & Fleischer, 1976; Iitaka, Shina & Kimura, 1974) and suggested for Ni^{II} (Smierciak, Passariello & Blinn, 1977). For $CuLX_2$ (X = Cl, NO₃) spectral and other evidence suggest five-coordination (Styka, Smierciak, Blinn, DeSimone & Passariello, 1978) and the enthalpy of formation of $CuL^{2+}(aq.)$ is smaller than that of other Cu^{II} complexes containing larger macro-

Fig. 1. General view of the structure.

cycles (Anichini, Fabbrizzi, Paoletti & Clay, 1978), but a Cu^{II} complex of the tetraoxa analogue of (I) is *cis*octahedral (van Remoortere, Boer & Steiner, 1975).

The structure of the title compound consists of isolated NO_3^- anions and $CuLNO_3^+$ cations (Fig. 1) in which the CuL moiety has almost perfect $C_{4\nu}$ symmetry. The Cu is displaced 0.51 Å from the N₄ plane. The five-membered rings have gauche conformations. Although the most stable arrangement of the free ligand is not known it is likely to be the same as in cyclododecane (Dunitz, 1968) and in (II) (Sakurai, Kobayashi, Tsuboyama & Tsuboyama, 1978), and the conformation in the complex is essentially identical to these.

References

- ANICHINI, A., FABBRIZZI, L., PAOLETTI, P. & CLAY, R. M. (1978). J. Chem. Soc. Dalton Trans. pp. 577–583.
- DUNITZ, J. D. (1968). Perspectives in Structural Chemistry, Vol. II, pp. 12–21. New York: John Wiley.
- FABBRIZZI, L. (1977). Inorg. Chem. 16, 2667-2668.
- IITAKA, Y., SHINA, M. & KIMURA, E. (1974). Inorg. Chem. 13, 2886–2891.
- International Tables for X-ray Crystallography (1974). Vol. IV, p. 99. Birmingham: Kynoch Press.
- LOEHLIN, J. H. & FLEISCHER, E. B. (1976). Acta Cryst. B32, 3063-3066.
- MARTIN, L. Y., DEHAYES, L. J., ZOMPA, L. J. & BUSCH, D. H. (1974). J. Am. Chem. Soc. 96, 4046–4048.
- REMOORTERE, F. P. VAN, BOER, F. P. & STEINER, E. C. (1975). Acta Cryst. B31, 1420–1426.
- SAKURAI, T., KOBAYASHI, K., TSUBOYAMA, K. & TSUBOYAMA, S. (1978). *Acta Cryst.* B**34**, 1144–1148.
- SHELDRICK, G. M. (1976). SHELX 76. Program for crystal structure determination. Univ. of Cambridge, England.
- SMIERCIAK, R., PASSARIELLO, J. & BLINN, E. L. (1977). Inorg. Chem. 16, 2646–2648.
- STYKA, M. C., SMIERCIAK, R. C., BLINN, E. L., DESIMONE, R. E. & PASSARIELLO, J. V. (1978). *Inorg. Chem.* 17, 82– 86.